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S U M M A R Y  
The method of strained coordinates is extended to expand the dependent variables as well as independent coordinates 
of a nonlinear hyperbolic system in asymptotic series of several parameters. The perturbation parameters may be of a 
different nature but are required to he intrinsically independent of each other. The method is found to be particularly 
useful for treating problems with several relevant parameters being of the same order of one another. The illustrative 
example discussed is a nonlinear supersonic nonequilibrium flow over a wedge where the nonlinear effect in the flow 
becomes of the same order as the nonequilibrium effect. A second-order theory is developed,to provide a description of 
the near-field flow pattern and the expression of the front frozen shock wave attached to the nose of the wedge. 

1. General Remarks 

The perturbation method of Poincar6 [1], which consists of developing the solution of an 
initial or boundary value problem in an asymptotic series of a parameter which appears expli- 
citly either in the problem or is introduced artificially, is one of the standard analytical methods 
of solution of nonlinear problems of applied mechanics and physics. In Poincar6's early work, 
as well as in the subsequent development of his ideas, one may find some interesting germs for 
conceivable further generalizations [2]. One of the important developments in the singular 
perturbation scheme, namely the method of strained coordinates [3], stems originally from 
Poincar6's periodic solutions of nonlinear ordinary differential equations by the straining 
of the independent coordinates. Lighthill [-4] later suggested a general technique for removing 
nonuniformities from perturbation solutions of nonlinear problems. The principle of Lighthill's 
technique is that the linearized solution may have the right form, but not at the right place. The 
discrepancy is removed by straining one of the independent coordinates, i.e., the chosen 
independent coordinate is expanded in an asymptotic series as are the dependent variables. 
Lin [-5] further advances the technique for hyperbolic equations in two variables by adopting 
characteristic parameters as the basis for a perturbation theory, which amounts to straining 
both families of characteristics. This singular perturbation technique has proved altogether 
successful for treating nonlinear hyperbolic systems [6], [7], [8]. Further generalization and 
systematization of the method may be found in the work of Chou and Chu [9] in treating rather 
complicated nonlinear nonequilibrium flow problems. 

Another interesting generalization from Poincar6's original idea is the so-called multi- 
parameter perturbation technique suggested by Nowinski and Ismail in treating some elasto- 
static problems [10]. The ordinary perturbation technique is extended to embrace the ex- 
pansions of the desired quantities in powers of several parameters. The parameters involved 
may be of a different character: some, for example, describing the material properties, some 
describing the dynamic or geometrical nature of the problems, and so on. However, parameters 
concerned in the perturbation scheme must be intrinsically independent of each other. 

The present investigation is concerned with combining the previously mentioned techniques 
together to treat a nonlinear supersonic nonequilibrium flow over a wedge. The combining 
method may be illustrated as follows : Suppose the boundary value problem under considera- 
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tion includes N parameters ei (i = 1, 2 ... . .  N) intrinsically independent of each other, and the 
independent variables are x and y. A pair of characteristics labelled as e and fl is properly 
chosen to form the new independent coordinates and the system of governing equations and 
boundary conditions is then transformed from the xy-plane into the eft-plane. Solutions 
fo (e, fl, e) may be constructed in powers of N parameters as 

fo(e, fl; e) = Z (a,)m(~i)"'"(e')P' q~T.)".;2~ ( e, fl), 
m,n,...,p=O i,j,...,l= l 

where fo represents the dependent variables including the new pair of dependent variables x 
and y, and all the boundary conditions of the system should be expanded accordingly. 

To each successive order K =  m+ n +. . .  +p one obtains an associated set of boundary value 
subsystems, which may then be solved by the standard operational methods. The details of 
coordinate transformations and multi-parameter perturbations will be presented in the later 
sections. 

The illustrative problem selected here is a nonlinear supersonic nonequilibrium flow over a 
wedge. The numerous linearized analyses of the corresponding problem [11], [12], [13], and 
[14] describe the so-called nonequilibrium effect (or relaxation effect) for which the flow 
properties exhibit an exponential decay with respect to the distance away from the disturbance. 
In other words, the dissipative nonequilibrium effect tends to smooth out the abrupt compres- 
sion generated by the wedge. However, the well-known nonlinear amplitude dispersion effect, 
which tends to steepe n the compression gradients, has not been taken into account in the 
linearized analyses. Linearized theory fails to give any information about the position and 
strength of the shock wave, nor does it give a satisfactory description of the flow field at large 
distances from the disturbance. Besides the numerical analysis [15] of the problem, some non- 
linear analyses of the problem may be found in the case of near-equilibrium (a ~ ~), [16], and 
in the case of relaxation-dominated (e~ a) flow [17], where the parameter a characterizes the 
nonequilibrium effect and the parameter ~ characterizes the nonlinear effect. The problem 
examined here is concerned with the fact that the nonequilibrium effect is of the same order as 
the nonlinear effect [a = O (e)]. The system of governing equations is solved by employing the 
multi-parameter characteristic perturbation method. Carrying the calculation to the second- 
order of the semi-nose wedge angle, the front frozen shock wave is constructed from the solu- 
tion of the fluid properties and the relations obtained by applying a similar perturbation scheme 
to the shock jump conditions. However, it is well-known that at large distances from the 
disturbance, the nonequilibrium process must eventually proceed toward equilibrium (~ >> a). 
Consequently, the present second-order theory should only be regarded as a near-field solution. 

2. Description of the Problem 

The basic equations governing the motion of a steady nonequilibrium supersonic flow over a 
wedge can be easily reduced from the governing equations of a general nonequilibrium flow 
system (see, for example, the book of Vincenti and Kruger [18], or Clarke and McChesney 
[19]). They are 

pUUx+pVuy+px = 0, 

puvx + pvvr + pr = O, 

h q  . .  , 
1 (Upx+vpy) +pux+pVr = ~ q(p P, q) 

a} 

Uqx+Vqr = ~(p, p, q), (2.1) 

1 hq 
(up~ + vpr) - (up~ + vpy) = ~ (t(p, p, q), 

h = h(p, p, q). 
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Here, only one nonequilibrium mode is considered, and the various transport effects are 
neglected. Also, x and y are the Cartesian coordinates ; u and v denote respectively the velocity 
components along the x- and y-axis; p, p, h, q, and 0 are respectively the pressure, density, 
specific enthalpy, a variable characterizing the progress of the nonequilibrium process and the 
reaction rate, 0=O(p, p, q), which describes the rate of change of the progress variable q, is a 
known function of p, p, and q. Finally, the subscripts x, y, q, p signify partial differentiation 
with respect to x, y, q and p respectively; and the frozen speed of sound [18] is given by 

( @ )  - h p  (2.2) 
a} = ~p ~.q - h p - 1 / p  " 

When the frozen Mach number My = [(u2+ vZ)/a}] ~ is greater than one, the system (2.1)is 
hyperbolic and possesses three families of real characteristics, namely, the outgoing and 
incoming Mach waves, and the streamlines, i.e., 

_ + v - -  af)  21,2 - dx - u v + a y ( u  2 2 2 
dy a } -  v 2 = cot (0 +_ Ys), 

(2.3) 
dx u 

. . . . .  cot 0,  23 dy v 

where 0 = tan-  1 (v/u) being the flow angle and #f  being the frozen Mach angle. 

P* q*~e* 

/ / 
x* X 

Figure 1. Labelling of the characteristic coordinates. 

A characteristic coordinate system (cq/3) may be introduced as follows : 7 is constant along 
an outgoing Mach line such that if this line intersects the Surface of the wedge at a point x --x*, 
the line will be labelled as c~ = x* ; fl is constant along a streamline such that if this line intersects 
the front shock wave at a point y = y * ,  the line will be labelled as f l=y*  (see Figure 1). The 
transformation relationships between (x, y) on one hand and (~, fl) on the other can be deduced 
immediately from dx = x~ d~ + xp dfl and dy = y~ dc~ + y~ dfl. In terms of c~ and fl, Eqs. (2.1) and (2.3) 
become 

x~ = uy~/v , 

x~ = 2yp 

puu~+pvv~+p~ = 0,  

uq~ = glX~ , (2.4) 

pv u a -  pu v p -  [uv + 2 ( a } -  vZ)pa] / @ + ( u -  2v) (tYp hq/hp = O, 

pu(  y v y,) +  ,xp) + (x pp - = o ,  

p~/ a} - p , - q~hq/ hp = O, 

where 2 is the 21 appearing in (2.3) i.e., the direction of the outgoing Mach waves. 
For later convenience, the equilibrium speed of sound a e is introduced as follows : 
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a e ~ -  ~ _ 

s,q* hp + hqq* - 1/p 

where q* is the local equilibrium value of q. 
Let the wedge be described by the equation y = ex where e is the tangent of the semi-nose 

angle. The condition that the flow be tangent to the wedge implies that v/u~e as y~ex. In the 
aft plane, one has 

/) 
- - , e ,  as f i = O ,  
u 

x = a ,  at f i = 0  (2.6) 

y = fl, at front shock.  

The last two conditions are the consequence of the labelling of ~,/?-coordinates. In addition, 
the usual jump condition must be satisfied at each point on the nose frozen shock. Consequently, 
if 6 is frozen shock angle and subscript "0" denotes the free-stream condition, which is assumed 
to be in the thermodynamic equilibrium, the jump conditions are 

p(u-vcot  f)= poUo, h+�89 2 (2.7) 

P--Po=poUo(Uo-U), v=(Uo--U) cot6, q=qo, 
respectively the continuity equation, the energy equation, the momentum balance in the 
normal and tangential directions, and the continuity of q. The position of the front shock is, 
of course, not known. However, it must assume such a form that dx/dy = cot ~ at every point on 
the frozen shock. The front shock wave will be determined later. 

3. Multi-Parameter Characteristic Perturbation 

The present investigation is concerned with the nonequilibrium flow pattern of the wedge in 
2 2 the case that one of the fluid parameters ~ =alo/aeo - 1 is small and is of the same order as the 

geometricproperty e, 1.e., a = 0 (e). Since both ~ and a are considered small in the present case, 
and they are also intrinsically independent of each other, the solution of the system may be 
assumed to be constructed in a power series of parameters e and o- in the ~fi-plane as follows : 

w(~, ~)= Wo(~, ~)+~w,(~, ~)+ ~wl(~,/~) + ~2w~(~, ~)+ ~ ( ~ ,  ~ ) + ~  w~(~, ~)+ .. . .  
(3.1) 

where w can be any dependent variable which appears in the system (2.4) and wo represents the 
value of w in the undisturbed region. In particular vo = 0. 

Making use of Taylor's series, 2 may be expanded as 

= 4o + ~1 (~,/~) + ~ (~, ~) + ~2 ~2 (~, ~) + . . . .  

where 

)b = ( M2 - 1) ~ , 

M 2 M 2 ' h = -  SOv~(~,/~)_ so 
u0 ,~oUo ~clpi (~,/~) 

etc., and 

~l = p +  \Op/+2~a}\Op/]o  ' 

VOa} hqt?a}~], 
Is ~ -  L ~q hp ~p ] o 

M~o (3.2) 
22oU2 ~c2qi(e' fl), 
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where subscript "0" appended to a bracket signifies that all quantities in the bracket are evaluat- 
ed at the undisturbed state of the oncoming stream. 

Similarly, the expansion of 0 (P, P, q) is 

1 [ e ( _ q l ) + a ( _ Q 2 ) + e 2 ( _ q 2 _ t l p 2  ) 
O(p, p, q) = To 

q- go- q12 hqo ay~o h~o 

where 

To = - hoo / [(tq (ho + ha q* )]o , and 

~I = (qpp + 2qpo/ a} + qpp/ @)0/2(1 + hqqo/hp)o . 

Substituting Eqs. (3.1), (3.2) and (3.3) into system (2.4) and collecting terms of like order of 
~, a, ~2, ea, a 2, ..., the zeroth-order and the first-order governing equations are found to be 

e~ Yo~ = 0 Xo~ = 2oYo~ (3.4) 

~i: Xo~V 1 = uiYo~+UoYl~ ' xit~= 2iYop+2oylp, 

puoua~+P1~=O, ZoUoql~+xo,q~ = O ,  

poUoVip+ (hqo/hoo)UoYoaql/Zo+2oPla = 0,  (3.5) 

Po Uo Yor v~  + xo~P ~p - xo~ p ~ = 0 ,  

Pl~/a}o-- Pi~ -- (hqo/hpo)Uo ql/Zo = O . 

Equations for the other order systems will be discussed in the subsequent sections. 
In a similar manner, the boundary conditions of the system can be decomposed into a set of 

conditions, according to different powers of e, a, etc. 
As pointed out previously the position of the front shock wave is not known a priori. How- 

ever, it is understood that the shock would decay into a Mach line ct = 0 if the disturbance 
approaches zero, i.e. e~0.  It is assumed that the frozen shock wave expression in aft-plane may 
be of the following form : 

a = a (fi, e, o-) = efl (fi) + o-Fi (fl) + 82f2 (fi) + eaf(fl) + o-2 Fz (fi) + . . .  (3.6) 

Functions f ' s  and F '  s 
From the perturbation 

e ~ Xo=0,  at f l=0 ;  

el: X l = 0 ,  at f l = 0 ;  

Vl =Uo, at f l=0 ;  

o-1: Xx=0 ,  at f i=0;  

1/1 =0 ,  at f l=0 ;  

will be determined later. 
of relevant boundary conditions, we have the following condi t ions 

y o = f i ,  at a = O .  

Yl =0 ,  at c~=O. 

q~ = 0 ,  at a = O .  

(3.7) 

(3.8) 

I/1 =0 ,  at a=O,  

QI=O,  a t  a = O .  
(3.9) 

ez: x 2 = 0 ,  at f i=0;  Y2 =0,  at a = 0 ,  

v2 = u l ,  at f l=0 ;  q2 =0 ,  at a = 0 .  

~ la l :  2 =0 ,  at f l=0 ;  y =0 ,  at a = 0 ,  

= U~ ,a t  f l=0;  g/ =0 ,  at a = 0 .  

o-2: X2=0,  at f i=0 ;  Y2=O, at e = 0 ,  

V2=O, at f l=0 ;  Q2=0,  at e = 0 ,  etc. 

(3.10) 

(3.11) 

3.12) 
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4. Solution of the Problem 

The solutions of the zeroth order system (3.4) and (3.7) are easily found to be 

80: Xo = c~+2ofi, 

Yo =/~. 

The first-order system (3.5) together with boundary condition (3.8) can be solved by the 
Laplace transform method (a summary of this method is included in Appendix A). They are 

81: v i = u o ,  pi=poUo/Zo, u l = - U o / Z o ,  

Pl = M}oPo/2o, ql =0,  y, = ~, (4.2) 

xl = - M}o-  K1M~o Po Uo fl/(222o), 

where ~:1 is given in Eq. (3.2). 
In the a-order system, X1, I'1, U1, 1/1,/'1, Ri, and Q1, satisfy the same set of differential 

equations as xx, Yl, u~, vl, p~, Pa and q~. However, there are no inhomogeneous terms in the 
system (V1 =0), consequently, one has 

Xi=0 ,  YI=0, UI=0, 1/1=0, PI=0,  Ra=0, Q l = 0 .  (4.3) 

Governing equations for 82-order system are 

82: 192=uoy2~+ul ,  X2p=22+J,  oY2/~, 

poUoU2~WP2~=O, ZOUOqz~-=--q2--t lp 2 ,  

[90 HO l)2fl ~- 20 P2# = -- (hqo Uo)/(hoo %)(q2 + t/pl2), (4.4) 

t90 H0 1)2~ 71- P2/~ -- )'0 P2~ = 0 ,  
2 

P2~/ a yo - P2~- q2~ h~o/ hoo = O, 

where 22 has the same form of 21. 
The solutions for this inhomogeneous system and (3.10) are [see Appendix A] 

uo 
82" D2 (~' t )  -- '~'0 �89 h.o Zo2g t/fl exp u~ 

P2(a, f l )= -�89176 2 5 
hp 0 23 % t l f  exp 

pouo - exp - -  , (4.5) 
qz(~, t) = Z ~  Uo'Co 

1 
u2 - Uo p 2  (~' fi)' Po 

hqo po u4 

y2 (=,, ~) = �89 h.o ,~g 

x2(~, ~) = &:v2 

1 hqo 
p2 = + p2 - ~ q 2 ,  

- - t / f l [ e x p  ( - - U o ~ o ) -  1 ] ,  

M~o u2fl + yo hqo pou~ c~ 
+ 2~-u-~ 4 hpo UoZo2gqfieexp - u~% 

poUo ( ~ )  M~opo.o I1 (_ _~%3] +~1 M}o hqo 2 4 . . 4  2 2 
4 -  hpo Z~Zo/,/f12 exp - + x 2  2~o - e x p  p ft. 

Similarly, the governing equations for the ea-order system are 
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V=UoY~, xa=22+2oYp, p0UoU~+p~=0, 

ZoUogl~+gl = - (hpo/hqo)Pl, poUo g~+i~p-2p~ = 0,  (4.6) 

Po Uo f)~ + Pp + (hqo/hoo) Uo Cl/Zo = - (Uo/Zo) P l/a}o, 

PJa}o - D , -  (hqo/hpo) Ft~ = O. 

The relevant boundary conditions for the system are given in (3.1). 
Again, by employing the standard operational method, the solutions for the inhomogeneous 

system are 

h~176176176  xp - - -  - 1 , ~=-p / (poUo) ,  
ct - hq 0 2o Uo'Co 

= P/a}o-  (hqo/hoo)q, (4.7) 

(_&) Y = 2~o fl exp 

M~~ f12 exp ( - u~cx ) tcl M4fo fi 2~ZoU~o ( u ~ )  = 2 o Y + � 8 8  + exp - 

hp~176176 [exp ~ -I] 
+ hqo 222u 2 ~c2fl ( -  U~o) " 

There are no inhomogeneous terms in the o -2 system, consequently, one has 

u2=0, v2=0, pz=O, R2=0, x2=O and y2=0 .  (4.8) 

Finally, the complete solutions for the second-order theory are 

I f I] v (cq fl) = eu o + ~2 20 �89 ho ~ Zo 22 tiff exp u ~ o  

+e~r - � 8 9  f lexp - + . . . .  

pou~ e 2 hq ~ 2 5 
p(c~,fl)=po+e ~ + �89 hp o 23 % rlfl exp - u ~  ~ 

+ecr - � 8 9  22Zo flexp + . . . .  

q (cq fl) = qo + e2 PO2o 2u~ I 1 - exp (-- u~)]c~ 

hpo Po M}o - exp + 
- err hqo 2o u ~  . . . .  

(4.9) 
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M}oPo + 52 ( p2 hqo ) 
p (a, fl) = Po +e 20 a}~o hpo q2 

h o) 
\ a y o  hpo q - I - . . . ,  

hq~176 Iexp 1] ,(~, ~/= ~+~+~2 ~ h.  ~ "~ (- ~o~---~ - 

+ 5a ~ fl exp + ....  

x(~, ~)= % + 20/3 + 5 [ -  M}o fl- ~cl M}o Po Uo fl/(22~)] 

{ M}~176176 "~ (-u~%) 
+e2 2eyz + 2---o- Uo 4 h,o UoZo2o a ~/]~2 exp 

zva fO PO UO ~ ~"~ fO/dO UO 
+~cl h.o 42~Zo ~f12 exp + K2 223 f l  1 -exp  

M}o fl2ex p e xl ~"Io f12 a 
+ ~  2oy + �88 ~ + 4 23~o~o exp 

hooPoM6co [exp a 11 
+~ehqo 22gU2o fl ( - U ~ o ) - } +  .... 

( uo+o)] 

(4.9) 

5. Construction of  the Front Frozen Shock Wave  

Applying the perturbation analysis to the shock wave jump condition (2.7), the so-called 
"consistency relationship" [see Appendix B] may be easily obtained: 

dx 
- -  = cot 6 = 2o+5(-M}o61)+ eZ(-M}o62)+e~r(-M}o3)+ ...,  (5.1) 
dy 

where 

A+ 1 M}o v2 6 1 -  A + I  M}o v 1 62 - 
4 22 Uo' 4 2o 2 Uo 

3 -  A + I  M}o v and 
4 21 Uo 

A = I  +P~ooo + S a~h'p+a-ffy hp~ o" 

Also, the shock expression is assumed to be 

a = 5fl (fi) + gzf2 (fl) + 5af(fi) + . . . .  

therefore, 

cot3 = ~yy ~hock k Y=dc~ + yadfi /sho~k = x~ ~ + xp 

where x (aft) may be expanded in the following series: 

(5.2) 

(3.6) 
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~x o 

Ix 0xa ~=o 0X~ ~=o '~ 82 2 (o, fl) + ~ -  fl (fl) + ~ f2 (/3) 

F oX0[ ~X1 1 
+ 8a I =-- ' f(/3) + ~=o fl (/3) j + (5.3) 

L 6a 1~=o ~ "" '  

and y =/3, at the shock [eq. (2.6)3 ]. (5.4) 
From Eqs. (5.1) - (5.4) and second-order solutions (4.9), one may obtain the following rela- 

tions : 

_A+I M}o M}o_KxM}oPoUo/(222)] /3 f~(/3) = - 4 22 

- 20 1L2o + �88 h.o %22 rl/32 

M}o u2/3 M}o hqo pou 4 
2o Uo 4 hpo UO"C 0"~2 1~/32 

f(fl)--_ A + I  M~o /32 
16 2oa UoZo 

Finally, the second-order front frozen shock is given by 

[A41  M~o M} ~ K1M~oPoUo]fl 
c~= - 8  - 22 22o z J 

A+lM ofg hqoPoU  soU2/3 
+e2 4 2o z \20  + �88 hoo %22 r//32 M2 

2o u o 

M2 hqo PoU~ tlfl2+ea A+I M}o /32. __ ~2 f o  

4 hpouo%'22 4 23oUoZo 

It is obvious that the second-order theory presented here is only a near-field nonlinear solu- 
tion of the problem. Since the products 8/3, 82/3, 8o-/3 . . . .  that appear in the various terms of the 
theory become ambiguous as the value of fl increases. However, the systematic perturbation 
calculation of the near-field region can be carried out to any degree of accuracy. 

Appendix A 

A.1. Solutions of a Boundary Value Problem 

Systems (4.2), (4.5) and (4.6) all can be solved by the standard Laplace transform technique. 
For example, by denoting the Laplace transform of a function w (e, fl) by ~(s, fl) or simply by 
#, Le., 

= w(e, fl)e-~Sda, (a.1) 
o 

then system (4.5) may be reduced to 

dE v2 d~2 hqo poUo 4 qs (A.2) 
dfl  2 220 s dfl - hpo 2o'Co ( 1 ) '  

s + UoZo 
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and the corresponding boundary conditions for ~2 are v2 =ul/s, at fi =0;  and ~2 is bounded 
when fl-~ oe. 

The solution for this boundary value problem can be found to be 

~2(s ' fl) = ut , (hqo) pou~ ~[3 , (A.3) 
s (h.o) ~o~o 2 1 

S - t - -  
go'Co 

where ~ and Zo are defined in Eq. (3.3). 
Equation (A.3) can be readily inverted back to the e,/?-plane as : 

Uo 1 hqo poU4tlfl ( ~ ) 
/)2(~' fi) -- /~0 2 h.o Zo)~g exp UoZo " 

Similarly, one can find the solutions for P2, q2, etc. 

(A.4) 

Appendix B 

B.1. Consistent Relationship at the Front Shock 

The shock angle 6 may be expanded as follows 

(0~, fl) = (~0 + e61 (~, fl) + e2 32 (0~, fl) +/30" ~ (C(, fl) + . . . ,  (BA) 
where 60 =#f0, the free stream frozen Mach angle. 

Applying the perturbation scheme to the jump conditions of the shock wave [Eq. (2.7)], the 
e-order boundary conditions at the shock are 

po(ul -v i  cot 6o)+piuo = 0 ,  hpoPi+hpoPl+hqoql+uou i = 0 ,  
ql =0,  Pl+poUoUl = 0 ,  v l + u  i cot 6o = 0. (B.2) 

It is noted that Eq. (B.2) is a homogeneoussystem in Pl, Pl, u~, vl and ql. Likewise, collecting 
terms ofe 2, one obtains 

M 2 M 2 ~ V -- f0 v2 
pO(U2--V2 cot 6o)+P2Uo = - P o  IoOl ,-~poUo ~o a}o' (B.3) 

M2 / (h 2 h  l h  1 yo I+p2ay~ pp ~ pp~l  
hp~176176 -2~-o  vl 2 -[- ~ f  PP-'[- f / 0  ) " 

Vl 
q2 = 0 ,  p2+poUoU 2 =0, I)2"t-U 2 cot60 = --M}o6a 2~ �9 

It is also noted that the homogeneous parts of Eqs. (B.3) and (B.2) are the same. In particular, 
their determinants are zero when 6o = #go. Consequently, to ensure the system (B.3) is con- 
sistent, its nonhomogeneous terms must be related appropriately. This consistent relationship 
may be easily obtained by eliminating the second order quantities from the system (B.3). One 
has 

A + 1 M}o vl (B.4) 
6 1 -  4 2o Uo' 

where A is defined in Eq. (5.2). 
Details of the above derivation can be seen in author's earlier work [9]. 
Carrying the analysis to higher order systems, i.e., O (e4) and O (e2 tr2), one may obtain the 

expressions for 62 and 3 as given in Eq. (5.2). The tedious derivation for the higher-order systems 
is omitted here. 
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